+ Cevap Ver
2 sonuçtan 1 ile 2 arası
Like Tree2Beğeniler
  • 2 Post By cakal1010

Yaratılış Mucizelerinden biri Altın Oran ve hikmetleri

 ALLAH (c.c) Katagorisinde ve  Allahın Hikmetleri Forumunda Bulunan  Yaratılış Mucizelerinden biri Altın Oran ve hikmetleri Konusunu Görüntülemektesiniz.=>Evrende, Canlılarda ve Doğada Yaratılan Bir Güzellik Ölçüsü Altın Oran Nedir? Allah, herşey için bir ölçü kılmıştır." (Talak Suresi, 3) "... Rahman (olan Allah)ın yaratmasında hiçbir 'çelişki ve uygunsuzluk' (tefavüt) göremezsin. İşte gözü(nü) çevirip-gezdir; herhangi bir çatlaklık (bozukluk ve çarpıklık) görüyor musun? Sonra gözünü iki kere daha çevirip-gezdir; o göz ...

  1. #1
    Administrator £laf - ait Kullanıcı Resmi (Avatar)
    Üyelik tarihi
    Sep 2010
    Yer
    Benim sessizliğim içimde
    Mesajlar
    5.756
    Tecrübe Puanı
    10

    Post Yaratılış Mucizelerinden biri Altın Oran ve hikmetleri

    Evrende, Canlılarda ve Doğada Yaratılan Bir Güzellik Ölçüsü


    Altın Oran Nedir?

    Allah, herşey için bir ölçü kılmıştır." (Talak Suresi, 3)

    "... Rahman (olan Allah)ın yaratmasında hiçbir 'çelişki ve uygunsuzluk' (tefavüt) göremezsin. İşte gözü(nü) çevirip-gezdir; herhangi bir çatlaklık (bozukluk ve çarpıklık) görüyor musun? Sonra gözünü iki kere daha çevirip-gezdir; o göz (uyumsuzluk bulmaktan) umudunu kesmiş bir halde bitkin olarak sana dönecektir." (Mülk Suresi 3-4)

    "...Eğer uygulama veya işlev unsurları açısından hoşa giden ya da son derece dengeli olan bir forma ulaşılmışsa, orada Altın Oran Sayı'sının bir fonksiyonunu arayabiliriz... Altın Sayı, matematiksel hayal gücünün değil de, denge yasalarına ilişkin doğal prensibin bir ürünüdür."1

    Mısır'daki piramitler, Leonardo da Vinci'nin Mona Lisa adlı tablosu, ay çiçeği, salyangoz, çam kozalağı ve parmaklarınız arasındaki ortak özellik nedir?

    Fibonacci Sayıları: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, ...

    Fibonacci sayılarının ilginç bir özelliği vardır. Dizideki bir sayıyı kendinden önceki sayıya böldüğünüzde birbirine çok yakın sayılar elde edersiniz. Hatta serideki 13. sırada yer alan sayıdan sonra bu sayı) sabitlenir. İşte bu sayı "altın oran" olarak adlandırılır.

    ALTIN ORAN = 1,618

    233 / 144 = 1,618
    377 / 233 = 1,618
    610 / 377 = 1,618
    987 / 610 = 1,618
    1597 / 987 = 1,618
    2584 / 1597 = 1,618


    Altın Dikdörtgen ve Sarmallardaki Altın Oran
    Kenarlarının oranı altın orana eşit olan bir dikdörtgene "altın dikdörtgen" denir. Uzun kenarı 1,618 birim kısa kenarı 1 birim olan bir dikdörtgen altın dikdörtgendir. Bu dikdörtgenin kısa kenarının tamamını kenar kabul eden bir kare ve hemen ardından karenin iki köşesi arasında bir çeyrek çember çizelim. Kare çizildikten sonra yanda kalan küçük bir kare ve çeyrek çember çizip bunu asıl dikdörtgenin içinde kalan tüm dikdörtgenler için yapalım. Bunu yaptığınızda karşınıza bir sarmal çıkacaktır.

    "Sarmallardan hoşlanırız çünkü, sarmalları görsel olarak kolayca izleyebiliriz."
    Temelinde altın oranı yatan sarmallar doğada şahit olabileceğiniz en eşsiz tasarımları da barındırırlar. Ayçiçeği ya da kozalak üzerindeki sarmal dizilimler bu konuda verilebilecek ilk örneklerdir. Yüce Allah'ın kusursuz yaratışının ve her varlığı bir ölçü ile yarattığının bir örneği olan bu durumun yanı sıra birçok canlı büyüme sürecini de logaritmik sarmal formunda gerçekleştirir. Bunun sarmaldaki yayların daima aynı biçimde olması ve yayların büyüklüğünün değişmesine karşın esas şeklin (sarmal) hiç değişmemesidir. Matematikte bu özelliğe sahip başka bir şekil yoktur.8

    Deniz Kabuklarındaki Tasarım ve Altın Oran


    "İç yüzey pürüzsüz, dış yüzeyde yivliydi. Yumuşakça kabuğun içindeydi ve kabukların iç yüzeyi pürüzsüz olmalıydı. Kabuğun dış köşeleri kabukların sertliğini artırıyor ve böylelikle, gücünü yükseltiyordu. Kabuk formları yaratılışlarında kullanılan mükemmellik ve faydalarıyla hayrete düşürür. Kabuklardaki spiral fikir mükemmel geometrik formda ve şaşırtıcı güzellikteki 'bilenmiş' tasarımda ifade edilmiştir."9

    Yumuşakçaların pek çoğunun sahip olduğu kabuk logaritmik spiral şeklinde büyür. Bu canlıların hiçbiri şüphesiz logaritmik spiral bir yana, en basit matematik işleminden bile habersizdir. Peki nasıl olup da söz konusu canlılar kendileri için en ideal büyüme tarzının bu şekilde olduğunu bilebiliyorlar? Bazı bilim adamlarının "ilkel" olarak kabul ettiği bu canlılar, bu şeklin kendileri için en ideal form olduğunu nereden bilmektedirler? Böyle bir büyüme şeklinin bir şuur ya da akıl olmadan gerçekleşmesi imkansızdır. Bu şuur ne yumuşakçalarda ne de -bazı bilim adamlarının iddia ettiği gibi- doğanın kendisinde mevcuttur. Böyle bir şeyi tesadüflerle açıklamaya kalkışmak çok büyük bir akılsızlıktır. Bu ancak üstün bir aklın ve ilmin ürünü olacak bir tasarımdır. Bu tasarım herşeyi yaratmış olan Yüce Allah'a aittir:

    "... Rabbim, ilim bakımından herşeyi kuşatmıştır. Yine de öğüt alıp-düşünmeyecek misiniz?" (Enam Suresi, 80)

    "Bir deniz kabuğunun büyüme sürecinde, aynı ve değişmez orantılara bağlı olarak genişlemesi ve uzamasından daha sade bir sistem düşünemeyiz. Kabuk ...giderek büyür, fakat şeklini değiştirmez."10



    İşitme ve Denge Organında Altın Oran

    İnsanın iç kulağında yer alan Cochlea (Salyangoz) ses titreşimlerini aktarma işlevini görür. İçi sıvı dolu olan bu kemiksi yapı, içinde altın oran barındıran _=73 derece 43´ sabit açılı logaritmik sarmal formundadır.

    Sarmal Formda Gelişen Boynuzlar ve Dişlerde Altın Oran

    Filler ile soyu tükenen mamutların dişleri, aslanların tırnakları ve papağanların gagalarında logaritmik sarmal kökenli yay parçalarına göre biçimlenmiş örneklere rastlanır. Eperia örümceği de ağını daima logaritmik sarmal şeklinde örer. Mikroorganizmalardan planktonlar arasında, globigerinae, planorbis, vortex, terebra, turitellae ve trochida gibi minicik canlıların hepsinin sarmala göre inşa edilmiş bedenleri vardır.


    Mikrodünyada Altın Oran


    Miroorganizmalarda altın oran barındıran üç boyutlu formlar oldukça yaygındır. Birçok virüs ikosahedron yapısında bir biçime sahiptir. Bunların en ünlüsü Adeno virüsüdür. Adeno virüsünün protein kılıfı, 252 adet protein alt biriminin düzenli bir biçimde dizilmesi ile oluşur. İkosahedronun köşelerinde yer alan 12 alt birim ise beşgen prizmalar biçimdedir. Bu köşelerden diken benzeri yapılar uzanır.


    Peki acaba virüsler neden biz insanların zihnimizde canlandırmasını bile zorlukla yapabildiğimiz, böyle altın orana dayalı özel bir formlara sahiptirler? Bu formların kaşifi A. Klug bu konuyu şöyle açıklıyor:



    DNA'da Altın Oran

    Canlıların tüm fiziksel özelliklerinin depolandığı molekül de altın orana dayandırılmış bir formda yaratılmıştır. yaşam için program olan DNA molekülü altın orana dayanmıştır. DNA düşey doğrultuda iç içe açılmış iki sarmaldan oluşur. Bu sarmallarda her birinin bütün yuvarlağı içindeki uzunluk 34 angström genişliği 21 angström'dür. (1 angström; santimetrenin yüz milyonda biridir) 21 ve 34 art arda gelen iki Fibonacci sayısıdır.

    Kar Kristallerinde Altın Oran

    Altın oran kristal yapılarda da kendini gösterir. Bunların çoğu gözümüzle göremeyeceğimiz kadar küçük yapıların içindedir. Ancak kar kristali üzerindeki altın oranı gözlerinizle göre bilirsiniz. Kar kristalini oluşturan kısalı uzunlu dallanmalarda, çeşitli uzantıların oranı hep altın oranı verir.19

    Uzayda Altın Oran

    Evrende, yapısında altın oran barındıran birçok spiral galaksi bulunur.

    Fizikte de Altın Oran....


    "Birbiriyle temas halinde olan iki cam tabakasının üzerine bir ışık tutulduğunda, ışığın bir kısmı öte yana geçer, bir kısmı soğurulur, geriye kalanı da yansır. Meydana gelen, bir, 'çoklu yansıma' olayıdır. Işının tekrar ortaya çıkmadan önce camın içinde izlediği yolların sayısı, ışının maruz kaldığı yansımaların sayısına bağlıdır. Sonuçta, tekrar ortaya çıkan ışın sayılarını belirlediğimizde bunların Fibonacci sayılarına uygun olduğunu anlarız."20

    Doğada birbiriyle ilişkisiz canlı veya cansız pek çok yapının belli bir matematik formülüne göre şekillenmiş olması onların özel olarak tasarlanmış olduklarının en açık delillerinden biridir. Altın oran, sanatçıların çok iyi bildikleri ve uyguladıkları bir estetik kuralıdır. Bu orana bağlı kalarak üretilen sanat eserleri estetik mükemmelliği temsil ederler. Sanatçıların taklit ettikleri bu kuralla tasarlanan bitkiler, galaksiler, mikroorganizmalar, kristaller ve canlılar Allah'ın üstün sanatının birer örneğidirler. Allah Kuran'da herşeyi bir ölçüyle yarattığını bildirmektedir. Bu ayetlerden bazıları şöyledir:

    "... Allah, herşey için bir ölçü kılmıştır.""... O'nun Katında herşey bir miktar (ölçü) iledir." (Ra'd Suresi, 8)

  2. #2
    Misafir
    Üyelik tarihi
    May 2013
    Yaş
    26
    Mesajlar
    49
    Tecrübe Puanı
    0

    Standart

    39paylasim icin tesekkurler
    Furkan ve £laf Bunu Beğendiniz.

+ Cevap Ver

Benzer Konular

  1. Resulullahın Nihayetsiz Mucizelerinden
    By UHUD in forum Peygamber Efendimiz (S.A.V)
    Cevaplar: 0
    Son Mesaj: 04-13-2013, 02:07 AM
  2. Biri yer biri bakar, kıyamet ondan kopar
    By Furkan in forum Ata Sözleri
    Cevaplar: 0
    Son Mesaj: 10-22-2012, 12:01 PM
  3. Altın Oran ve Kabe Mucizesi
    By SeyyaH in forum İslami Videolar
    Cevaplar: 2
    Son Mesaj: 02-14-2011, 01:26 AM
  4. Kuranın mucizelerinden Ebu Leheb
    By Karani in forum Kuran Mucizeleri
    Cevaplar: 0
    Son Mesaj: 01-09-2011, 12:54 AM
  5. Altın oran ile ilgili önemli bilgiler
    By kutkuni in forum Kuran Ve Bilim
    Cevaplar: 0
    Son Mesaj: 09-11-2010, 04:38 PM

Bu Konudaki Etiketler

Yetkileriniz

  • Konu Acma Yetkiniz Yok
  • Mesaj Yazma Yetkiniz Var
  • Eklenti Yükleme Yetkiniz Yok
  • Mesajınızı Değiştirme Yetkiniz Yok
  •  

Search Engine Optimization by vBSEO 3.6.1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277